

MIT International Center for Air Transportation

Barriers to Routine UAV Operation in the National Aerospace System

Roland E. Weibel and R. John Hansman

Massachusetts Institute of Technology

4 April 2003

ERAST

Possible UAV Applications - Motivation

Remote Sensing

- Meteorology
- Scientific Research
- Aerial Photography/ Mapping
- Pipeline Spotting
- Disaster Monitoring

Aerial Surveillance

- Border Patrol
- Homeland Security/ Law Enforcement
- Traffic Monitoring

Communications Relay

Search and Rescue

→ Routine Access to NAS Needed

Approach

- 1. Identify and Understand Potential Barriers to Routine UAV Operation in NAS
- 2. Examine Potential Technologies or Processes to Overcome the Barriers
- 3. Conduct a Detailed Systems Analysis of the Human-Machine System – Using Semi-Structured Decision Framework
 - Determine Optimal Human-Automation Allocation
 - Determine Where Human Adds Value to System
 - Integrate Required Technologies or Processes into System

Barriers to Routine Access

- Federal Aviation Regulations Did Not Anticipate Presence of Unmanned Aircraft
- Present Infrastructure Not Configured For Unmanned Operations
- UAV System Failures Must Meet Equivalent Level of Safety to Manned Operations
- Public Must be Protected from Rogue Aircraft Use

UAV Operational Environment

Regulations Did Not Anticipate Remote Aircraft Operation

- Part 61 Certification of Pilots, Flight Instructors, and Ground Instructors
 - Pilot certification requires knowledge of aerodynamics, aircraft systems, and regulations
 - Guarantees competent operator in command of vehicle
- Part 23,25 Airworthiness Standards
 - Guarantees airplane is airworthy and controllable by the pilot
 - Standards scale by number of passengers aboard aircraft
- Part 91 General Operating and Flight Rules
 - Requires pilot vigilance to "see and avoid" other aircraft in good weather conditions
 - Positive separation provided by air traffic control in poor weather or different airspace

→ Pilot in Command Responsible for Safety of Flight

Regulations Did Not Anticipate Remote Aircraft Operation

Current Process: Certificate of Approval

- Contained in FAA Order 7610.4 Special Military Operations
- 60 Day Advance Notice Required
- Detailed Characteristics of Operation
 - Coordination, Communication, Operational Procedures
 - Method of Pilotage, Avoidance of Other Aircraft
 - Lost Link, Mission Abort Procedures
- Guarantee of Equivalent Level of Safety

Safety Elements

- Vehicle Airworthiness
- Training and Operating Procedures
- Maintenance
- Culture
 - Quality Management Processes
 - Incident Reporting
 - Accident Investigation
- Liability

Equivalent Level of Safety – Probability vs. Consequences

Catastrophic Accident			
Adverse Effect on Occupants			
Airplane Damage			
Emergency Procedures			
Abnormal Procedures			
Nuisance			
Normal			
AC 25.1309-1A	Probable	Improbable	Extremely Improbable

→ Consequences of Failure Change for Unmanned Operation

Descriptive Probabilities

Probability (per unit of expos	ure) FAR	JAR
1		0.1 1
		Frequent
10E-3	Probable	
		Reasonably
10E-5		Probable
102-3		
10E-7	Improbable	Remote
		Extremely Remote
10E-9		·
	Extremely Improbable	Extremely Improbable

Probabilities and Consequences

- Adverse Effect on Occupants not Applicable to UAV Operations
- Catastrophic Accident Worst Consequence of Failure
- "Catastrophic Events" Change Without People Onboard Aircraft
 - Loss of Aircraft No Longer Automatically Catastrophic
 - Example Possibilities
 - Collision of UAV with Manned Aircraft
 - Crash of Aircraft Over Densely Populated Area

→ Equivalent Level of Safety Must be Examined for Unmanned Operations

Public Must Be Protected From Rogue Aircraft Use

Commercial Aircraft

- Passenger Screening at Airports
- Cockpit Security
- Onboard Law Enforcement (Air Marshals)
- Difficulty of Operation

Civil Aircraft/ Ultralights

- Security of Public / Private Property
 * (Locked Aircraft, Secure Airport)
- Operational Restrictions
- Non-Suicidal Pilots

Unmanned Aerial Vehicles

- Threat Level Depends on Size and Capability
- Security Measures must Reflect Threat Level

Reduced Threat, Less Security

Semi-Structured Process – UAV Supervisory Control

→ Details of Automation Block Unknown

Next Steps

- Examine Procedures or Technologies Needed to Interface with Current Air Traffic Management System
- Discriminate Different Types of UAV Operation for Varied Certification Levels
- Assess Possible Failure Modes of UAV Operations and Consequences
- Determine Role of Operator in Liability for Operations and Level of Control Over Vehicle